Mini-invasive extracorporeal CO2 removal system

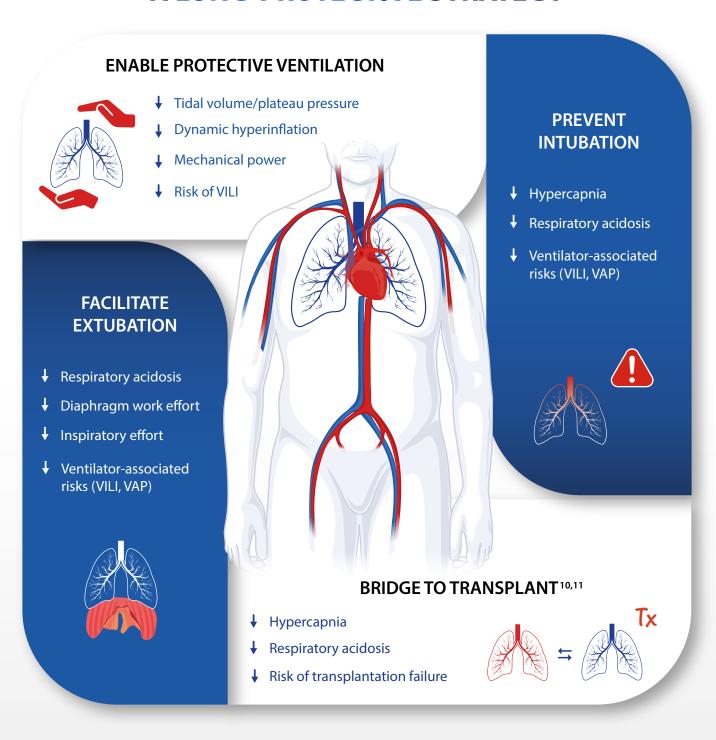
ProLUNG®

ProLUNG® 3D for the Aquarius™ System

Aquarius

A LUNG-PROTECTIVE STRATEGY

Distributed by:



Mini-invasive extracorporeal CO2 removal system

ProLUNG®

A LUNG-PROTECTIVE STRATEGY

PROLUNG® QUALITY AND INNOVATION

ProLUNG® is the reference system for mini-invasive extracorporeal CO_2 removal (ECCO₂R). ProLUNG® has all the features necessary to guarantee quality ventilatory support with a clinical rationale: high CO_2 removal capacity (VCO₂ > 100 mL/min), low invasiveness for the patient (13-14 Fr bilumen catheter).

What characteristics should the ideal ECCO₂R system have?

- ☐ High CO₂-removal performance
- ☐ Biocompatibility
- ☐ Reduced priming volume
- ☐ Prolonged kit duration
- ☐ Minimal invasiveness

Why choose ProLUNG®?

ProLUNG® 3D

- \square Optimal CO₂-removal capacity (VCO₂ > 100 mL/min at Qb = 400 mL/min)
- ☑ 1.81 m² membrane in polymethylpentene (PMP) covered with phosphorylcholine
- ☑ Priming volume of 125 mL (artificial lung)
- ☑ 3 days therapy (3D)

Double lumen catheter

✓ Low invasiveness: double lumen catheter ≥ 13 Fr

☑ Femoral, jugular or subclavian vascular access

PROLUNG® FROM THEORY TO PRACTICE

The research group of Gattinoni and Quintel at UMG carried out an animal study in 2018 to evaluate the CO₂-removal capacity of the ProLUNG® system under different conditions ¹. The study included 8 adult pigs with a body weight of 57 kg. The animals were sedated, ventilated and treated with ProLUNG® using a 13 Fr catheter. The CO₂-removal capacity of the VCO₂ ML system (membrane lung) was measured under different conditions of PaCO₂, blood flow (Qb) and medical air flow.

High CO₂-removal capacity VCO₂ > 100 mL/min

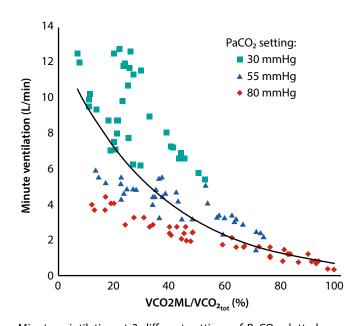
The measured VCO₂ reached a maximum value of 171 mL/min.

Typically, a removal of VCO₂ > 100 mL/min can be obtained with PaCO₂ settings between 55 and 80 mmHg, an extracorporeal blood flow (Qb) of 400 mL/min and a gas flow greater than 6 L/min.

PaCO₂ setting: 30 mmHg 55 mmHg 80 mmHg 100 80 40

VCO₂ (ML) as a function of blood flow (Qb) and three different settings of PaCO₂: 30, 55 e 80 mmHg.

Blood flow Qb (mL/min)


300

200

Reduction of ventilatory burden

Minute ventilation is reduced proportionally to the quantity of CO_2 removed by $ProLUNG^{\circ}$ (VCO₂ (ML)/VCO_{2tot}).

With a $PaCO_2$ of 74 mmHg and pH 7.3, it was possible to remove up to 138.8 mL/min of CO_2 allowing a reduction of ventilation from 7.4 to 1.9 L/min with no complications. This corresponds to a reduction in mechanical power from 9.3 to 2.6 J/min.

Minute veintilation at 3 different settings of $PaCO_2$ plotted as a function of $VCO_2(ML)/VCO_{2_{tot}}$.

"Minimally invasive extracorporeal CO_2 removal removes a relevant amount of CO_2 thus allowing mechanical ventilation to be significantly reduced depending on extracorporeal blood flow and inflow PCO_2 . Extracorporeal CO_2 removal may provide the physiologic prerequisites for controlling ventilator-induced lung injury.

500

400

The main result of this study was that a considerable amount of CO_2 was removed by the Estor ProLUNG system using only a minimally invasive cannulation and a blood flow rate similar to that used in renal dialysis".

Duscio et al. Crit Care Med. 2019, 47(1):33-40

20

0

0

100

PROLUNG® CLINICAL APPLICATIONS

 $ECCO_2R$ is a minimally invasive extracorporeal support for the management of ventilatory insufficiency². $ECCO_2R$ can facilitate protective ventilation at low tidal volumes or low plateau pressures in patients in mechanical ventilation, as well as facilitating rapid extubation³. In patients undergoing non-invasive ventilation (NIV) at risk of failure, $ECCO_2R$ can prevent the invasiveness and complications of intubation ³⁻⁵.

COPD 6-9

In COPD patients with exacerbations initially managed in NIV and at risk of failure, ProLUNG® reduces the risk of intubation, thus avoiding the associated comorbidities and the prolonged hospitalization associated with invasive mechanical ventilation. In COPD patients already in invasive mechanical ventilation, ProLUNG® contributes to protective ventilation with the aim of facilitating weaning from the ventilator.

ARDS 6,7

In patients with moderate ARDS where it is not possible to pursue protective ventilation because of hypercapnic respiratory acidosis, ProLUNG® allows the setting of adequate tidal volumes and plateau pressures, thus avoiding the onset of volutrauma and barotrauma.

TRANSPLANTATION 10,11

In all phases of lung transplantation (pre-intra-post), the use of ProLUNG® protects the lung, avoiding excessive ventilator load and allowing a better management of the transplantation procedure, thus avoiding the risk of having to resort to ECMO in an emergency.

TISSUE LESIONS 12

In the presence of tissue lesions of the respiratory system (broncho-pleural fistulas, ruptures of the trachea or diaphragmatic lesions), the use of ProLUNG® facilitates protective ventilation.

REFRACTORY ASTHMA – EXACERBATION OF BRONCHIECTASIS 2,13

In patients with refractory asthma or with exacerbation of bronchiectasis, ProLUNG® facilitates protective ventilation by reducing the load induced by invasive mechanical ventilation and normalizing blood pH values.

Mini-invasive extracorporeal CO2 removal system

ProLUNG®

A LUNG-PROTECTIVE STRATEGY

ProLUNG® PLAQUA3D	
Treatment modality	Hemoperfusion
Blood flow	Qb ≤ 450 mL/min (Aquarius™ system)
Membrane type	Polymethylpentene covered with phosphorylcholine
Membrane surface	1,81 m²
Priming volume	Around 250 mL (artificial lung (125 mL) + blood lines)
Sterilization	Ethylene oxide
Duration of single circuit	3 days
Rinsing and priming	2 L physiological solution with 10,000 IU of heparin
Vascular access	≥ 13 Fr double lumen central venous catheter

References

- Duscio E et al.: Extracorporeal CO₂ Removal: The Minimally Invasive Approach, Theory, and Practice. Crit Care med. 2019.
- Boyle AJ et al.: Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018.
- Pisani L et al.: Management of acute hypercapnic respiratory failure. Curr Opin Crit Care. 2016.
- Vianello A et al.: Extracorporeal CO₂ removal for refractory hypercapnia in the event of acute respiratory failure. Minerva Pneumol. 2015.
- Vianello A et al.: Succesful management of acute respiratory failure in an idiopathic pulmonary fibrosis patient using an extracorporeal CO₂ removal system. Sarcoidosis Vasc Diffuse Lung Dis. 2016.
- Grasselli G et al.: Practical Clinical Application of an Extracorporeal Carbon Dioxide Removal System in Acute Respiratory Distress Syndrome and Acute on Chronic Respiratory Failure. ASAIO journal. 2019.
- Hilty MP et al.: Low flow veno-venous extracorporeal CO₂ removal for acute hypercapnic respiratory failure. Minerva anestesiologica. 2017.

- Morelli A et al.: Extracorporeal CO₂ removal in hypercapnic patients who fail noninvasive ventilation and refuse endotracheal intubation: a case series. ESICM LIVES 2015, Berlin. 2015.
- Pisani L et al.: Effects of Extracorporeal CO₂ Removal on Inspiratory Effort and Respiratory Pattern in Patients Who Fail Weaning from Mechanical Ventilation. Am J Respir Crit Care Med. 2015.
- Ruberto F et al.: Low-flow veno-venous extracorporeal CO₂ removal: first clinical experience in lung transplant recipients. Int J Artif Organs. 2014.
- Soluri-Martins A et al.: How to minimise ventilator-induced lung injury in transplanted lungs: The role of protective ventilation and other strategies. Eur J Anaesthesiol. 2015.
- Pastore A et al.: LFVVECCO₂-R to provide "lung rest" in lesions of respiratory system: experience in one patient. SIAARTI, Rome. 2013.
- Arcaro G et al.: The Successful Management of a Patient With Exacerbation of Non-Cystic Fibrosis Bronchiectasis and Bilateral Fibrothorax Using a Venovenous Extracorporeal CO₂ Removal System. Resp Care. 2014.

ProLUNG 3D
EUROSETS S.r.l.
Strada Statale 12, n°143
41036 Medolla
Italy
€€0123

SET Waste bag & Dialyser extension F. M. S.p.A. Via Farini 65 bis 13043 Cigliano (VC) Italy

Assembled by Estor S.p.A.
Via Newton, 12
20016 Pero
Italy

Distributed by: Nikkiso Belgium bv Industriepark 6 3300 Tienen Belgium

Aquarius system
NIKKISO Europe GmbH
Desbrocksriede 1
30855 Langenhagen
Germany
€€0123

AQUALINE tubing Haemotronic S.p.A. Via Carreri, 16 41037 Mirandola Italy